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Introduction: The electroencephalography signal is well suited to calculate brain 
connectivity due to its high temporal resolution. When the purpose is to compute 
connectivity from multi-trial electroencephalography (EEG) data, confusion arises about 
how these trials involved in calculating the connectivity. The purpose of this paper is to 
study this confusing issue using simulated and experimental data. 

Methods: To this end, Granger causality-based connectivity measures were considered. 
Using simulations, two signals were generated with known AR (auto-regressive) coefficients 
and then simple multivariate autoregressive (MVAR) models based on different numbers of 
trials were extracted. For accurate estimation of the MVAR model, the data samples should 
be sufficient. Two Granger causality-based connectivity, granger causality (GC) and Partial 
directed coherence (PDC) were estimated.

Results: Estimating connectivity corresponding to small trial numbers (5 and 10 trials) resulted in 
an average value of connectivity that is significantly higher and also more variable over different 
estimates. By increasing the number of trials, the MVAR model has fitted more appropriately to 
the data and the connectivity values were converged. This procedure was implemented on real 
EEG data. The obtained results agreed well with the findings of simulated data.

Conclusion: The results showed that the brain connectivity should calculate for each trial, and 
then average the connectivity values on all trials. Also, the larger the trial numbers, the MVAR 
model has fitted more appropriately to the data, and connectivity estimations are more reliable. 
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1. Introduction

ll brain functions, including sensation, per-
ception, cognition, and any human action, 
are performed by dynamically complex 
neuronal networks in the brain (Omidvar-
nia et al., 2014) by orthogonalization of the 
strictly causal multivariate autoregressive 
model coefficients, to minimize the effect 

of mutual sources. The novel measure, generalized or-
thogonalized partial directed coherence (gOPDC). The 
study of these networks helps to better understand the 
mechanisms of brain neurodevelopment and its related 
disorders. There is a growing interest in studying the 
brain to identify connectivity and interactions among dis-
tributed brain regions (Bastos & Schoffelen, 2016). Sev-
eral imaging techniques can be utilized to evaluate brain 
connectivity, such as functional magnetic resonance 
imaging (fMRI), magnetoencephalography (MEG), 
and electroencephalography (EEG) (Cociu et al., 2017) 
fMRI and diffusion tensor imaging (DTI) have tradition-
ally been used to find biomarkers for autism, but there 
have been very few attempts for a combined or multi-
modal approach of EEG, fMRI and DTI to understand 
the neurobiological basis of autism spectrum disorder 
(ASD). EEG is often an appropriate technique for study-
ing brain connectivity due to its high temporal resolution, 
non-invasive nature, and low cost (Williams et al., 2018). 
Two critical explanations of brain connectivity have been 

suggested, functional and effective connectivity (non-di-
rected and directed connectivity, respectively) (Astolfi et 
al., 2007) its modification known as direct DTF (dDTF). 
Functional connectivity is inferred based on temporal 
correlations between measurements of neuronal activity. 
In contrast, effective connectivity refers to the model of 
causal effects that describes the influence of a neural unit 
on others (Friston, 2011). Therefore, effective connectiv-
ity demonstrates the direction of information flow in the 
brain.

Once the EEG signals have been recorded, the signal-
processing specialist is confronted with the challenge of 
quantifying the neural interactions and providing a reli-
able interpretation of the findings (Wang et al., 2014). 
When the number of trials/observations used to compute 
connectivity metrics is different, in other words, different 
length of data is involved in the calculation of connectiv-
ity metrics, estimated connectivity, and consequently its 
neurophysiological interpretations vary across different 
trial counts. Connectivity metrics are often affected by 
the length of the data. A reason for this fact is that many 
connectivity measures are based on the magnitude of a 
quantity, which always has a positive value, therefore 
the difference of measures computed with different data 
lengths will never be zero. A set of human emotional 
faces consists of happy, sad, and anger, and a set of hu-
man emotional faces consists of happy, sad, and anger 
zero. The effect of this fact often depends on the data 

Highlights 

• The average of connectivity values on trials is considered brain connectivity. 

• Connectivity estimations are more reliable for larger trial numbers.

• Estimations of connectivity for small trial numbers are not valid.

Plain Language Summary 

Several different techniques can be utilized to evaluate brain connectivity such as functional magnetic resonance imaging 
(fMRI), magnetoencephalography (MEG), electroencephalography (EEG) and etc. Connectivity estimation methods are 
associated with computing the correspondence of neural signals over time, therefore modalities such as EEG due to their 
fine temporal resolution are well suited to calculate such connectivity. When the purpose is to compute connectivity from 
multi-trial data, confusion arises about how these trials and how many trials are involved in calculating the connectivity. 
During calculating brain connectivity from data with many observation epochs, the question arises whether brain connec-
tivity is calculated for each trial and then average or for the averaged trials. The target of this paper is to study the above-
mentioned issue using simulated data and realistic EEG data. Our analysis indicated that the brain connectivity should 
calculate for each trial, and then average the connectivity values on all trials. It was also found that estimating connectivity 
corresponding to small trial numbers resulted in an average value of connectivity that is significantly higher and also more 
variable over different estimates and is not valid. These findings can help us in the correct estimation of brain connectivity.
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points of data, the smaller the data points, the larger the 
effect (Bastos & Schoffelen, 2016). For some measures, 
such as coherence, analytic estimates of this effect can 
be estimated and applied, but cannot be generalized to 
all metrics (Bokil et al., 2007)”mendeley”: {“formatted 
citation”: “(Bokil et al., 2007). Another suggestion to 
address this problem is to utilize the inferential statis-
tical framework, based on a non-parametric/parametric 
statistical test, where GC estimates cannot be generaliz-
able to 5, 10, 100, 500, and 1000 trials. The vertical axis 
represents the average GC metric±1 standard deviation 
across 100 realizations (simulated data). This paper was 
conducted to clarify the confusion in connectivity analy-
sis when using multiple trials of EEG data. The analysis 
pitfall that a researcher may encounter in performing 
connectivity analysis on real data is investigated using 
the simulated data and experimental data.

2. Materials and Methods

The flowchart illustrated in Figure 1 outlines the sum-
mary of the procedure in the current study. The presented 
procedures are evaluated using the simulated data and 
experimental data. The flowchart summarizes the essen-

tial steps. As shown in Figure 1A1, two synthetic signals 
are generated. Experimental EEG data are prepro-cessed 
according to Figure 1A. The multivariate autoregressive 
(MVAR) model representation of signals is utilized to 
find out the information flow between pairs of signals 
and directional interactions between them as shown in 
Figure 1B. Finally, the connectivity measure is extracted 
and compared in different trial numbers which are sum-
marized in Figure 1C. All of these steps are described in 
detail below.

Multivariate autoregressive (MVAR) model

Directed connectivity measures can be quantified with 
various methods, which are divided into two groups 
of data-driven and model-based methods (reviewed in 
(Lehnertz, 2011)). Among these, MVAR has been widely 
utilized for biological signal analysis (Faes et al., 2012) 
partial coherence. The MVAR process is a time-frequen-
cy domain statistical tool to model directional and caus-
al information flow between EEG electrodes. In these 
model-based procedures, a parametric MVAR model fits 
observed data time series using some techniques, such 
as multivariate lattice algorithms, state-space models or 

Mehdizadehfar., et al. (2023). Brain Connectivity Estimation Pitfall. BCN, 14(4), 519-528.

Figure 1. Summary of the pipeline

A) Generating synthetic signals, B) Extracting the granger causality and estimating the MVAR model of the data, (C) Calculat-
ing connectivity measure GC and PDC for a different number of trials
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least‐squares methods (Mullen, 2010). In the last decade, 
an increasing number of model-based connectivity mea-
sures, closely related to Granger’s definition of causality, 
have been proposed. GC-based connectivity measures 
were considered in the current paper.

In 1969, Granger expressed a comprehensive formal-
ization of GC (Granger & Aug, 1969). GC states that if 
one stochastic process X2(t) contains information in past 
values that permits a more accurate prediction of X1(t), 
then X2(t) could be called a casual to X1(t) (Blinowska, 
2011). Assume X1(t) is represented by an AR model us-
ing P previous values of X1(t) with a prediction error e11 
and A as the coefficient matrix (Equation 1).

1.
p

i=1
X1(t)=∑AiX1(t-i)+e11

Then suppose X1(t) is represented using P previous val-
ues of X1(t) and P previous values of X2(t) with a predic-
tion error e12 (Equation 2).

2.
p p

i=1 i=1
X1(t)=∑AiX1(t-i)+∑BiX2(t-i)+e12

If the variance of e11(δ
2
11(e11)) is more than the variance 

of e12(δ
2
12(e12)), then it is an explanation of a causal inter-

action from X2(t) to X1(t). 

Segmentation-based MVAR model 

The concept of segmentation-based MVAR is similar to 
windowing techniques. The sliding window of length W 
from the data is extracted and the MVAR model is fitted 
to this data. By moving the sliding window and repeat-
ing the procedure, the MVAR coefficient matrix is ob-
tained. Sufficient data points to fit the model is a crucial 
issue accurately. Let X(t)=x1,...xT is an M-dimensional 
time-series EEG data of length T (M: Electrodes of EEG 
data, T: Time points per electrode). In the general case, 
we have M2P coefficients to estimate (M: The number 
of EEG electrodes, P: The order of model), which re-
quires a minimum of M2P data samples. It is required to 
have much more than these data samples. When multiple 
trials are available, each trial can be assumed a random 
sample from the same stochastic process and averaging 
of trials reduces the model bias. Therefore, for accurate 
MVAR estimation, the data from all trials are used. Af-
ter obtaining the frequency‐domain representation of the 
model, several quantities can be computed related to the 
information flow, oscillations, and coupling in neuronal 
systems based on model parameters for each trial sepa-
rately. In the connectivity measure of multiple trials, an 
essential stage is to take a vector summation operation 
followed by a total number of trials-normalization stage. 

Compared to calculated connectivity measures from 
samples with different numbers of trials, it was observed 
that an overestimation of connectivity may occur in the 
condition with the smallest number of samples (low 
number of trials) (Friston, 2011). Therefore the larger tri-
al numbers result in better model parameter estimation.

Granger causality (GC)

GC and Granger-based measures are susceptible to 
quantify bi-directional interactions. Originally, the con-
cept of GC was defined in the time domain, then the 
extension to the frequency domain was formulated by 
Geweke (Geweke, 1982). Two quantities are required to 
computee frequency domain-GC, the covariance of the 
AR-model’s residuals (∑), and the spectral transfer ma-
trix H(ω) (defined as A-1[ω]). 

The following fundamental identity holds: 
H(ω)∑H(ω)*=S(ω) (Wilson, 1972), with S(ω) being the 
cross-spectral density matrix for X1 and X2 at frequency 
ω. From the residuals’ covariance matrix, the spectral 
transfer matrix, and the cross-spectrum, the GC in the fre-
quency domain can be computed as follows (Equation 3):

3. 1 1

2 1

1 2

1 1 2 2 1 2

1 1

2
2

( )
ln( )

( ) ( ) ( )

X X
X X

X X
X X X X X X

X X

S
GC

S H

ω

ω ω
→ =

∑
− ∑ −

∑

Partial directed coherence (PDC)

The PDC was defined in the following form (Baccalá 
& Sameshima, 2001) (Equation 4):

4. pij(f)=
Aij(f)

aj
*(f)aj(f)

In this equation, Aij(f) is the Fourier transform of 
MVAR model coefficients A(t) and aj(f) is a column with 
index j of A(f) matrix.

3. Results

Pipeline validation

To simulate the effect of trial number on connectiv-
ity calculation, two simulated data were generated with 
known AR coefficients, a sampling rate of 400 Hz, and 
500 ms trial length. After extracting the GC, based on 
5, 10, 100, 500, and 1000 trials, simple auto-regressive 
models were calculated for each condition. After select-
ing the model parameters, the model order was tested 
between 1 and 20 to select the best order using AIC in-
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http://bcn.iums.ac.ir/


Basic and Clinical

523

July & August 2023, Volume 14, Number 4

formation criteria. The proposed model was validated 
using three criteria of whiteness, consistency, and stabil-
ity. Finally, a model that met all three validation criteria 
is selected. 

Two popular connectivity measures, GC and PDC, are 
selected to investigate in the present paper. Here, 100 
simulations of a simple AR model were realized and the 

average and the standard deviation across realizations 
are considered. The simulations showed that the estimat-
ing GC corresponding to small trial numbers resulted 
in an average value of connectivity that is significantly 
higher and also more variable over different estimates 
compared to conditions with higher trial numbers. By 
increasing the number of trials, the AR model is more 
appropriately fitted to the data and hence the GC results 
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Figure 2. Granger causality estimates for 5, 10, 100, 500, and 1000 trials

The vertical axis represents the average GC metric±1 standard deviation across 100 realizations (simulated data).
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Figure 3. PDC for 5, 10, 100, 500, and 1000 trials

The vertical axis represents the average PDC metric±1 standard deviation across 100 realizations (simulated data).
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are more reliable. Figure 2 shows the results of this simu-
lation. A similar result is obtained for the PDC metric. 
As shown in Figure 3, the average PDC value decreases 
with increasing the number of trials and also its variabil-
ity decreases. The obtained results of these two simula-
tions quite agree. Figure 4 and Figure 5 show the value 
of GC and PDC connectivity metrics throughout the fre-
quency band for different trial numbers respectively. As 
shown in Figure 4 and Figure 5, the values of connectiv-
ity are lower for higher trial numbers.

Experimental data

A set of human emotional faces, including happy, sad, 
and anger was selected from the extended Cohn-Kanade 
(ck+) dataset (Lucey et al., 2010). The facial expressions 
were presented on a computer screen for a duration of 
3000 ms and immediately replaced by a black screen for 
1000 ms. The task was developed using Psychtoolbox 
software, version 3.0.14 (Brainard et al., 1997). Partici-
pants were asked to determine the emotion by pressing 
a key using a gamepad with three buttons corresponding 
to each expression. They were requested to look at the 
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Figure 4. GC measure for different trial numbers (simulated data)
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Figure 5. PDC measure for different trial numbers (simulated data)
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center of the screen and attempt to reduce blinks during 
the data acquisition. EEG signal was continuously re-
corded using active electrodes situated on a standard cap 
according to the 10-20 system using a g.tec amplifier and 
digitized at 1200 Hz. Impedances of all active electrodes 
were kept below 10kΩ throughout data acquisition (Me-
hdizadehfar et al., 2020). 

The proposed pipeline was applied to real EEG data. 
Data were analyzed for two electrodes in frontal (F4) 

and occipital (O2) regions. After standard preprocess-
ing, including band-pass filtering (0.5-60 Hz), removing 
ocular artifact, epoch (pre-stimulus time=500 ms, post-
stimulus time=1500 ms), and removing bad epochs, 
GC and PDC were extracted for 5, 10, 20, and 60 tri-
als. Estimated GC corresponding to small trial numbers 
resulted in an average GC value that was higher over 
different estimates compared to conditions with higher 
trial numbers (Figure 6). As shown in Figure 7, the value 
of average PDC decreases with increasing the number of 
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Figure 6. Granger causality estimates for 5, 10, 20, and 60 trials (EEG data)
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Figure 7. Partial directed coherence estimates for 5, 10, 20, and 60 trials (EEG data)
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trials. The obtained results agree well with the findings 
of simulated data and the decreasing trend in the connec-
tivity measure has the same trend in simulated data and 
real EEG data. Figure 8 and Figure 9 show the value of 
GC and PDC connectivity between two EEG electrodes 
(F4 and O2) throughout the frequency band for differ-
ent trial numbers, respectively. As shown in Figure 8 and 
Figure 9, the values of connectivity are lower for higher 
trial numbers.

4. Discussion

This paper was conducted to study brain connectiv-
ity estimation pitfalls related to multiple trials of EEG 
data. When attempting to compute connectivity from 
data with many observation epochs, the question arises 
whether brain connectivity is calculated for each trial 
and then average or for the averaged trials. When the 
connectivity measures were calculated on trials, it must 
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Figure 9. PDC measure for different trial numbers (EEG data)
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Figure 8. GC measure for different trial numbers (EEG data)
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be interpreted as a measure of dependency between av-
eraged trails responses, rather than the underlying neu-
ral processes. Since this can be difficult to interpret, it 
is suggested to fit connectivity models to the ensembles 
of trials instead of describing information transfer. Here, 
the number of trials used to calculate connectivity should 
be considered. Estimating connectivity corresponding to 
small trial numbers (5 and 10 trials in our simulations) 
resulted in a higher average value. For a larger number 
of trials (100, 500, and 1000 trials in our simulations), 
results are more reliable. Therefore, the larger the trial 
number, the better the model parameter estimation. The 
analysis of connectivity metrics for different lengths of 
EEG data also confirmed the results of simulation data. 
By increasing the trial numbers, the values of connectiv-
ity measures are decreased and converged.

5. Conclusion 

This paper presented a connectivity estimation pitfall 
when using multiple trials of EEG data. GC and PDC 
connectivity estimation methods, as a frequency domain 
demonstration of the directed relationship between pairs 
of signals, were applied to simulated synthetic time se-
ries. A significant decrease in the value of connectivity 
measures and their variability was observed by increas-
ing the number of trials, thus confirming the overestima-
tion of connectivity in small trial numbers. Therefore, for 
the larger trial numbers, connectivity estimation will be 
more accurate and therefore result in a reliable interpre-
tation of connectivity networks in the brain. The pitfall 
investigated in this paper is a general issue and it is in-
dependent of the type of task used in data recording and 
the method of connectivity measurement. It is hoped that 
this clarification will be effective in reducing the confu-
sion of researchers and results in a proper inference.
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